NEW MINISTER RESPONSIBLE FOR SAFETY & HEALTH ISSUES APPOINTED

The Hon. MIKE RADCLIFFE, MLA for River Heights was appointed the Minister of Labour on February 5, 1999. As part of the Department of Labour, he is responsible for the Workplace Safety and Health Division which is comprised of four branches known as Workplace Safety & Health, Mines, Occupational Health and Mechanical & Engineering.

Mr. Radcliffe was born and has lived in Winnipeg all his life. He graduated from the U of M with a BA and an LLB. After graduating he made a conscious choice to remain in Manitoba at a time when many of his classmates were moving to other provinces. His wife, Linda is also a Manitoban and they have two sons.

He practiced law with the same law firm for 20 years with the Hutterian Brethren Church of Manitoba as one of his major clients. His work in his legal practice has given Mr. Radcliffe an appreciation for Manitoba’s diverse workplaces and practices.

Workplace Safety and Health legislation is based on the Internal Responsibility System concept where workplace parties (employer, workers and safety and health committees) take responsibility for ensuring a safe and healthy workplace.

Mr. Radcliffe is a strong proponent of personal responsibility and believes that the IRS concept is an extension of that. He comments, “by empowering people at the individual worksite, you get everybody participating and everybody buying in. It’s far more effective for creating a safe, secure and healthy workplace for every Manitoban.”

The partnership between employer and employee with government having a facilitating role removes the whole concept of workplace health and safety from an adversarial and inquisitorial system into a participatory system says the Minister.

Mr. Radcliffe says that he wishes to continue to encourage the partnership concept in the worker-employer-government relations. “It is really the wave of the future. The final mechanism is enforcement when there are no other options.”
“Safety Culture” at Gerdau MRM Steel

by Donna Johannson

Based in Selkirk, Manitoba, Gerdau MRM Steel has been in the steel manufacturing business for over 90 years and employs some 475 employees. There is a central Safety and Health Committee, which represents the entire facility. Each department also has a Committee (reporting back to the main Committee) with representatives acting as Safety Captains during each shift.

At MRM, safety and health is not just a separate entity of the organization, it’s an ongoing part of doing the job. A “safety culture” exists where workers, management, committee members, and those entering the site are keenly aware that safety is #1 with this company. It is evidenced through such activities as their procedural systems, training programs and safety and health committee recommendations.

Trevor Jarvis, Vice-President of Operations explains that senior management today believe that MRM can operate in a manner consistent with achieving zero lost time accidents. “We did not always believe that achieving an accident free workplace was possible. As a result, a level of lost time accidents were deemed to be inevitable. The Safety and Health Committees at MRM are the main driving force in achieving this goal.”

Building the safety culture at MRM did not happen over night. It has taken time and energy to evolve to this point. Through the years, a number of safety related initiatives have been tried, some working very well, others not. “Addressing the specific things that needed to be fixed as opposed to ignoring issues,” says Don Roach, Management Co-Chair of the Safety Committee, “helped to improve the attitude of workers. It showed that somebody cares about safety.”

Glen McDonald, Worker Co-Chair agrees that the proactive approach has worked well, particularly with the Committee openly discussing problems and offering solutions. “When you bring down the walls and work together, things will get done. Over the years, the attitude has changed to be that it’s everybody’s problem and let’s work together.”

Examples of the initiatives and activities include:

Senior Management Support
Wayne James, Safety Director says that senior management is committed to a safe and healthy workplace and demonstrate this by seriously considering, and most often endorsing, the recommendations put forward by the Safety & Health Committee. Management recognizes that the Committee is very important and they put a lot of confidence in what the committee has to say. Representatives on the committee are empowered to make decisions about spending and strategies for change, which helps greatly in getting recommendations off the ground.

Training Programs for Employees
In 1988, MRM established the Learning Resource Centre on site. As a rule, every employee is involved in development and training with job specific and common core courses offered. Safety related courses form a segment of the overall program. Glen McDonald is extensively involved in the delivery of courses. According to McDonald, workers respond well to the training centre and are interested in signing up for courses to gain a better understanding of the tasks before them. Supervisors play a role by motivating and encouraging workers to sign on.

STOP Program
Within the last 2 years, a STOP program (which was based on a strategy used by Dupont to audit safety behaviors) was implemented at MRM. With some modifications to suit MRM’s corporate goals, the program received management endorsement. The goal of the program is to STOP and communicate with workers.

Cont’d on Page 3
about safety to reinforce positive effects as opposed to catching them doing something wrong. This program is tied to performance evaluation. According to Don Roach, the program is generally working well and forms an important part of where the company is at today in terms of its safety culture.

Somebody Cares

Through an analysis of the work orders received in the Maintenance Department, Glen McDonald with other team members were able to track where and how work orders were being processed. This not only helped to get a handle on the process, but it had a secondary effect where workers felt like somebody cared about safety. McDonald says workers realized that when they submitted work orders (be it safety related or otherwise), at some point in time they would be addressed. It also reinforced the message that when someone comes by to talk about safety, it’s not to point out that they are doing something wrong. Their concerns were genuine.

Air Sampling

Dust in the melt shop has been an ongoing concern for many years. A five year program of enhancement of the dust collection systems has resulted in a dramatic improvement in the interior and exterior conditions. Recently, the Committee decided to take a proactive role in measuring the changes by hiring an external company to conduct air sampling over a one-year period.

The end result will be a benchmark to confirm the changes and as a base for future evaluations. Results will be reported to all parties concerned with recommendations for improvements as necessary. The committee has reached a level where they are empowered to not only make the recommendations but follow through with taking charge of the activities involved.

Committee Effectiveness

What makes the Committee effective consists of a combination of factors. Firstly is the mutual respect of each member, regardless of his/her role in the organization. Roach and McDonald both agree that good communication is dependent on mutual respect, honesty and the partnership attitude of all concerned.

Mike DuCroix, Regional Safety and Health Officer has been an integral part of the Committee’s effectiveness by serving in an advisory capacity. The Committee structure evolved by trial and error over many years and is always being reviewed by the Committee itself for effectiveness and need for change.

By meeting regularly and conducting inspections, the Committee is able to keep a handle on the issues. Ongoing evaluation of the safety systems and procedures in place and making modifications wherever necessary is also a key element of the Committee’s effectiveness.
INVESTIGATING WORKPLACE ACCIDENTS
– New CD-ROM and One-Day Course

When a serious accident occurs at the workplace, it is important to determine exactly what happened in order to prevent further occurrences. An accident investigation is the account and analysis of an accident based on information gathered by a thorough examination of all contributing factors and causes involved.

Supervisors, safety and health committee members and other staff of the organization may be called upon to conduct an accident investigation should a serious accident occur at the workplace. As an educational tool, WSH has developed an interactive CD-ROM on how to Investigate Workplace Accidents. The CD-ROM covers investigation concepts and the steps involved, such as visiting the scene, interviewing witnesses, analyzing evidence and how to prepare the report. Included within the CD-ROM is a short video showing a simulated accident scene and the activities conducted by the investigator.

The NEW CD-ROM entitled: “INVESTIGATING WORKPLACE ACCIDENTS” is available at no charge to employers in Manitoba (one copy per workplace) by calling 945-3446. The CD-ROM also contains copies of our Resources (e.g. Codes of Practice, Guidelines and Bulletins).

New One-Day Course on Investigating Workplace Accidents:

WSH will be offering the new one day course on Investigating Workplace Accidents starting in September 1999. The following dates have been scheduled:

- September 21 - Winnipeg
- October 20 - Winnipeg
- October 27 - Brandon
- November 22 - Winnipeg
- December 14 - Winnipeg

To register for the Investigating Workplace Accidents course, (cost is $50.00 plus GST) please call: 945-3446 (Winnipeg) or 726-6361 (Brandon).

To obtain a copy of our course calendar which includes all course descriptions and the registration form, please call our Winnipeg or Brandon office.

Employment Standards

Employers and Employees of Manitoba

• Effective April 1, 1999, the Manitoba minimum wage will increase to $6.00 per hour.

• Effective May 1, 1999, the new Employment Standards Consolidated Code and Regulations come into force. Please be aware that the Code does not introduce any significant changes to the rights and responsibilities of employers and employees in Manitoba.

For more information, please contact us at 945-3352, toll free at 1-800-821-4307, or through the internet at http://www.gov.mb.ca/labour/standards/
WSH receives over 10,000 calls per year from workers, employers and the general public about safety and health issues. Applying the legislation to “real life” situations often involves some discussion about the circumstances. This question and answer feature addresses some of the more common questions asked by you. We welcome your questions - please call 204-945-6848. We may also print your question(s) and answers in the event that it may help someone else.

Q. What training or certification is required for a person to operate a forklift?
A. Manitoba Regulation 162/98 and a new Code of Practice for The Safe Operation of Powered Lift Trucks came into effect in January 1999, stating that “no Employer” shall allow a worker to operate a powered lift truck (forklift), and no worker shall operate a powered lift truck unless the “Employer” has issued a certificate to the worker allowing him or her to do so. Prior to issuing such a certificate, the employer must ensure the following three requirements have been met:

1) That the worker has been instructed, trained and tested in the operation of powered lift trucks as required under the new Code of Practice. The training may be provided by the employer or an outside party or consultant, provided that the training meets the requirements of the code of Practice.

2) That the worker is familiar with the particular operating procedures for the truck(s) that he or she will be operating at the workplace. The Operator’s Manual provided by the manufacturer of those forklifts should be reviewed thoroughly and understood by the operator.

3) That the worker has demonstrated competency in the operation of the particular truck(s) that the operator will be operating at the workplace. The competency requirements that must be met are explained in the Code of Practice.

Q. What information is required to be stated on the Certificate?
A. Although not specifically stipulated in the regulation, the certificate to operate the forklift should include the following information:
 - The purpose for the certificate such as “Forklift Operator Certificate.”
 - The name of the Employer issuing the certificate.
 - The Type of Machines the worker may operate.
 - The Name & signature of Issuing person.
 - The Name & signature of Recipient (operator).
 - The Date of issue.
 - Any restrictions or other notations (eyeglasses etc).

Q. How often are refresher courses required?
A. The frequency of refresher courses is not stipulated but it is required that the Employer establish an evaluation system to ensure that the worker maintains competency and that appropriate records are maintained of the training that the worker receives relative to operation of the lift truck. An employer is obligated to suspend the certificate of a worker who is observed to be operating in an unsafe or careless manner. Such occurrences should be duly recorded by the employer even though the operator’s certificate may be re-instated.

FIRST AID VENDORS PROVIDING INSTRUCTION

The regulation defines a first aider as a person who has a certificate in CPR, and in emergency, standard or advanced first aid issued by St. John Ambulance, the Canadian Red Cross, or other organizations granted equivalent status. The following organizations have applied for and been granted equivalent status by the Director of WSH. There may be a number of different independent vendors providing instruction in these courses.

cont’d page 7
Falls account for a significant proportion of the injuries and fatalities in Manitoba workplaces. In Manitoba, workers must be protected from fall hazards, when in a situation where they could fall a vertical distance of 2.5 metres or more. This is the regulatory requirement, but should only be considered as a minimum standard. The workplace should be assessed for the risk and consequence of fall hazards, and an effective fall protection program developed and implemented.

When assessing the workplace for fall hazards, it is important to undertake a complete risk evaluation. This evaluation can be done in the form of a job hazard analysis, where the work task is broken down into a number of distinguishable steps. The steps are then analysed to determine the hazards and identify preventative measures to protect against the risk of falling.

Ideally, the choice of a protection system will be one that removes the risk of falling entirely. For example, it is preferable to provide a fixed barrier to prevent a worker from falling, than personal protective equipment (safety harness and lifeline). A permanent or portable guardrail is an example of such a control.

A travel restraint system is intended to limit a worker’s movement so the worker is unable to reach a location where there is a risk of falling. The restraint system is made up of a safety belt (or safety harness), lifeline and/or lanyard and an anchor. The safety belt is secured to a lifeline having a fixed length which is attached to a secure anchor.

The length of the lifeline is such that the worker can only proceed to within approximately 1 metre of an opening or edge. Under no circumstances should a travel restraint system be rigged so that a worker is in a position to fall.

A full fall arrest system differs from a travel restraint system. Unlike travel restraint, a fall arrest system does not prevent a fall, it reduces the chance of injury when a fall takes place.

FALL PROTECTION - YOUR LIFELINE TO SAFETY

Lifeline - This is the part of the system that is attached to the anchor point and the user of the system. Lifelines must have a minimum strength equivalent to 60mm (5/8 inch”) diameter polypropylene fibre rope. Lifelines must be properly secured to the anchorage point and be protected from abrasion or damage along their full length.

Fall arrester (rope grab) - This is a device that automatically locks onto the lifeline when a fall occurs. It is fitted between the lifeline and lanyard and normally slides freely on the lifeline until there is a sudden downward motion. When this sudden motion occurs, the fall arrester “grabs” the lifeline and holds firmly.

Lanyard - A lanyard is an approved device located between the fall arrester and the worker’s safety harness. The lanyard should be chosen properly, so that its length will not result in an extended fall arc or distance.

Shock absorber - This is a device that limits the force applied to the user when a fall occurs. The shock absorber prevents both injury to the worker and the amount of force transferred to the lifeline and anchor. A shock absorber may be a separate device or built into the lanyard design. It is highly recommended that shock-absorbers be used on all fall arrest systems.

Full body safety harness - This is a device designed to contain the torso and pelvic area of a worker and to support the worker during and after a fall. There are different types of harnesses for different applications and they should be selected according to the circumstances.

A complete fall arrest system consists of an anchorage point, lifeline, fall arrester, lanyard, shock absorber, and full body safety harness. All of these components should comply with the latest editions of the CSA Z259 series of standards on fall protection equipment.

Anchorage point - The anchorage must be capable of supporting a static load of 17.8kN (4000 lbs) in any direction, with proper provision to accept a lifeline connection. If the anchor is exposed to the elements, it must be corrosion resistant.
Did you know that in Manitoba there are over 4300 licenced power engineers? Why do we have these licences? What do these people do? In order to understand that, a little history is important.

In the 1800’s and early 1900’s, numerous explosions and fatalities occurred. In response, most jurisdictions in North America, including Manitoba, passed laws to improve boiler safety. Manitoba passed a law in 1910 called The Steam Engineers’ Act that regulated the operation of boilers and required qualified people to run them. This Act was later renamed the Stationary Engineers’ Act and in 1977 was renamed again to the Power Engineers’ Act which is in effect today.

The qualified people who safely operate and maintain the various types of equipment that heat buildings, provide power for industrial operations as well as refrigeration in plants, arenas and other locations.

In order to perform their duties, power engineers require extensive training which is accomplished in levels or “classes”. The desirable basic education is a high school diploma followed by trade related courses. These technical programs are combined with compulsory practical experience on the job under the supervision of already licenced individuals. The classes of Power Engineer range from a Fifth Class to a First Class that is the highest level of study that can be attained. They must work with boilers or systems at the designated level before qualifying to write provincial exams. In most classes, more than one exam must be written. Progress to higher levels depends on practical experience, courses of study and passing of exams. The plants in which experience is obtained are also classified according to plant capacity by size, type, etc.

A benefit to power engineers is that the exams are standardized across the country. This allows for freedom of movement and employment opportunities elsewhere in Canada without having to re-write any exams.

As we approach the next century, there is a wide variety of work performed by power engineers. A great deal of equipment has been in existence for decades and requires manual operation and procedures. A power engineer must be on the site at all times. But new technology requires new knowledge as well. Boilers can be controlled by computers many miles away and on malfunction, can shut down automatically. Some boilers function with automatic controls and do not require an operator to be present at all times. This is known as “guarded status” where the boiler is checked on a periodic basis only.

The history and the work of power engineers has changed drastically in the last century. It continues to require significant skill and experience to operate the equipment efficiently and safely. The Mechanical & Engineering Branch of MB Labour continues to enforce standards and requirements to ensure we never see the death and destruction of 100 years ago.

For further information on this topic, please feel free to call us at 945-3373 or check our website at http://www.gov.mb.ca/labour/safety/mechanic/index.html.
Faulty Ladders Recalled

Krause Inc. has voluntarily recalled three types of articulated ladders after learning that a problem with the hinge caused 30 personal injuries, according to a hazard alert issued in Nova Scotia. The recall on the portable aluminium ladders was instituted after Krause representatives determined that a hinge on some models may be unlocked during use, which may cause the ladders to collapse. “This could result in serious injury or death,” states the Canadian Standards Association (CSA) in a letter to provincial and federal safety officials.

The safety problems apply to selected ladders manufactured between December 1, 1997, and May 22, 1998. The ladders that may experience hinge problems include the 3.6 m MultiMatic, the 4.8m MultiMatic and 3.6m TriMatic. The recalled ladders have labels with CSA issue numbers KL-0001, KL-0002, KL-0003 or KL-0004, as well as Underwriters’ Laboratories issue numbers AC7404 through 7488, 7494 and 7495.

For more information call the Krause hot-line at (877) 572-8731.

Courtesy OHS Canada.

Bradley Steel Processors Inc.
Failure to guard securely a punch press in operation at the workplace. $500
Court Date: Jan./99 Infraction Date: Mar./97

RJ Millwork Co. Ltd.
Failure to provide proper equipment & training in operating a forklift. $2,000
Court Date: Sept./98 Infraction Date: Dec./97

Harvey Klippenstein
Failure to provide proper fall protection equipment to a worker engaged in the installation of roof insulation & roof decking. $2,500
Court Date: Nov./98 Infraction Date: Sept./97

Y2K and Occupational Safety and Health

With the reliance on electronically supported systems and equipment in the workplace, it is important to be assured that the equipment will not fail or create a hazardous situation in the workplace. Under section 4 of the Workplace Safety and Health Act the employer has a responsibility to provide a safe and healthy workplace. To meet this expectation with respect to computer and electronically controlled equipment, the employer should:

· Create an inventory of systems / devices that may present potential risks.
· Contact the equipment suppliers / manufacturers for technical support.
· Establish priorities. Determine which system / devices are essential to the safety and health of your workers.
· Test the system / devices for Y2K compliance now.
· Fix or replace equipment that could cause problems.
· Develop or modify your contingency plan outlining backup procedures in case of unforeseen problems.
· Involve the joint safety and health committee and workers in identification of potential year 2000 problems.
· Contact your industry associations, supplier or manufacturer associations, consulting engineers or system consulting companies for support in assuring that your workplace is prepared for the coming year. Should you have any questions or concerns about the occupational safety and health of your workplace, contact the WSH Client Service Desk at: 1-800 282-8069 ext.3446, in Winnipeg 945-3446, or in Brandon 726-6361.